首页 > 硕士 > 农学 > 正文

元宝枫叶色、叶形与翅果的变异研究

The Researches on Variation of Leaf Color, Leaf and Samara Shape in Acer Truncatum Bunge

作者: 专业:园林植物与观赏园艺 导师:丰震 年度:2010 学位:硕士  院校: 山东农业大学

Keywords

Acer truncatum Bunge, Anthocyanin, Leaf Color, Leaf Shape, Samara Shape, Variation

        本文以泰安地区元宝枫(Acer truncatum Bunge.)植株为材料,通过对其秋季叶色变化的时间、红叶比例的观测调查,测定了叶片中生理生化指标包括质体色素、花色素苷、可溶性糖、苯丙氨酸解氨酶、细胞液pH值、叶片相对含水量等,并且统计了100株元宝枫的叶片、翅果性状,利用遗传变异特性、聚类分析、主成分分析等方法研究其种内变异情况。元宝枫叶片秋季变为黄色或红色,变红色叶株数占调查株数的33%,开始变色时间为10月16日至12月初落叶基本完毕,变色持续时间约为45天。在叶片生长季节,随着叶片的生长,叶片的光合作用逐渐加强,其生理生化活动也发生相应的变化,叶绿体色素含量逐渐升高,可溶性糖含量、苯丙氨酸解氨酶活性也相应升高,一般在8月份达到最高值,为秋季叶色的变化积累了一定的物质基础;花色素苷含量在夏季出现短暂下降,可能是受强光照射后部分分解所致。通过色差仪利用色相学的原理和方法来研究元宝枫叶片的色相可以准确快捷地获得叶片色相的坐标,并且可以将元宝枫分为两大类型:第一类型红绿属性a值介于19.53±8.25,黄蓝属性b值介于-20.31±4.51,可以成为红色株系。第二类型红绿属性a值介于8.36±6.73,黄蓝属性b值介于-3.69±7.26,称之为黄色株系。随着秋季时间的变化,叶片中有关生理生化指标变化如下:叶绿素a,叶绿素b,含量逐渐下降,而叶绿素a/b的比值基本恒定,类胡萝卜素含量基本不变,保持稳定,花色素苷含量、可溶性糖含量、苯丙氨酸解氨酶活性会升高趋势,相对含水量、细胞液pH值有下降趋势,红色株系与黄色株系的变化趋势和幅度表现出一定的差异。在元宝枫秋季叶色变化过程中,叶片中有关生理生化指标随树冠位置由内及外的变化情况如下:红色叶株系元宝枫叶片中质体色素的含量、细胞液pH值呈现下降趋势,花色素苷含量、可溶性糖含量、叶片相对含水量、苯丙氨酸解氨酶活性呈现上升趋势;在黄色叶株系叶片中生理生活指标也表现出一定的差异。用1%盐酸乙醇作为元宝枫花色素苷提取液的效果最好;最佳的提取时间是6 h;元宝枫花色素苷对光照比较敏感,黑暗条件下花色素苷的稳定性明显提高;低温4℃下花色素苷稳定性好;酸性环境pH为2.0时花色素苷颜色稳定,随着pH值升高其稳定性下降明显。100个元宝枫品种的种翅比和叶基角数值均分布比较集中,在翅果与叶片的方差分析中,种翅比株间和株内的差异性显著,而叶基角的株间差异性显著,株内的差异性不显著,且种翅比和叶基角的相关系数为0.0542,呈极不显著的正相关。种子千粒重的变异系数最大,说明千粒重的变异度最大,其次依次是翅宽>张开角>翅长>种长>连接角>种翅比;叶片性状的变异系数最大的是叶宽,说明叶宽的变异度最大,其次为裂长>裂宽>叶基角>叶长。在翅果性状主成分分析中,第一主成分为翅果的大小因子;第二主成分为翅果的连接角度因子;第三主成分为翅果的张开角度因子;第四主成分为翅果的产量因子。在元宝枫叶片性状主成分分析中,第一主成分为叶片大小因子;第二主成分为叶片的形状因子;第三主成分为叶片的角度因子。对采集的100棵元宝枫植株进行系统聚类分析得树形图,从聚类结果来看,全部供试材料100棵元宝枫植株可以完全区分开,以遗传距离的次序可把元宝枫为四类。
    In this paper, the time of leaf color change and the red proportion leaf of Acer truncatum Bunge. had been investigated in tai’an area. It was taken to measure physiological and biochemical indexes, such as plastid pigment, anthocyanin, soluble sugar, phenylalanine ammonia-lyase(PAL), cell sap pH, leaf relative water content and other indicators. Statistics of the 100 Acer truncatum Bunge. leaves and fruits morphological indexes, showed the intraspecific variation by genetic variation characteristics, cluster analysis, principal component analysis and so on .A. truncatum leaves color is yellow or red in autumn, red leaf trees accounted for 33% of surveied trees. The beginning time for discoloration was October 16 and end of until leaves falling about early December, lasted about 45 days.During the leaves growing season, leaf photosynthesis started to enhance and biochemical activities was correspond to the change. Contents of plastid pigment, soluble sugar and PAL activity gradually increased, generally the highest value was in August, so that it builded up a certain materials for leaf color change in autumn. Content of anthocyanin in a brief decline during summer, that may be due to the decomposition of the anthocyanin under high light irradiation partly.The study used colormeter which based on the hue science theory to measure A. truncatum leaves and the coordinates of hue accurately and quickly was easily obtained. Based on the results, A. truncatum can be classified into three types. The red-green attribute a values between 19.53±8.25, yellow-blue attribute b values between -20.31±4.51, can be the red group; The red-green attribute a values between 8.36±6.73, yellow-blue attribute b values between -3.69±7.26, can be the yellow group.As the fall was coming, the physiological and biochemical changes of the leaves were as follows: The contents of Chlorophyll a and Chlorophyll b decreased gradually, while the contents of Chlorophyll a/b ratio and Carotenoids remained stable; the contents of anthocyanin and soluble sugar and PAL activity increased gradually, while cell sap pH and contents of leaf relative water decreased gradually; Red group and yellow group showed differences between trends and magnitude of change. During the discoloration of the leaves, with the changes of spatial location from the inside to the outside, the changes of the physiological and biochemical are as follows:The contents of plastid pigment and cell sap pH decreased gradually; while the contents of anthocyanin, soluble, leaf relative water and PAL activity increased gradually. Red group and yellow group showed differences in some physiological and biochemical indexes.The optimum extraction conditions of anthocyanins from Acer truncatum Bunge were established with alcohol containing 0.1%HCL, 6h extraction periods. The anthocyanin from Acer truncatum Bunge. was sensitive to the light. It was stable under darkness and 4℃; It was also observed that the anthocyanin was stable while the pH was 2.0. With the increasing pH, its stability was dropped significantly.The values of the ratio of fruit length and wing length and angle of leaf base of 100 varieties distributed concentrated. In variance analysis, the differences of the ratio of fruit length and wing length both were significant among species and within the species, while the differences of the angle of leaf base were significant among species and not significant within the species.The related coefficient of the ratio of fruit length and the wing length and the angle of leaf base was 0.0542, it represented that they were not significantly correlated with each other.The largest coefficient of variation was the thousand seed weight, it indicated that the greatest degree of variation, followed by the width of wing>stretch angle>length of key fruit>length of key fruit> joint angle; The largest coefficient of variation of leaf traits was its width, indicating the greatest degree of variation of it, followed by the crack length>crack width >angle> length.In the principal component analysis of key fruit morphological indexes, the first principal component represented factor of size; The second principal component represented the joint angle; The third principal component represented angle; The fourth principal component represented the yield. While of the key leaf morphological indexes, the first principal component represented the size; The second principal component represented the shape;The third principal component represented the angle. The results of cluster analysis of the 100 samples showed that all the tested plants can be completely separated. The A. truncatum was divided into four categories by genetic distance.
        

元宝枫叶色、叶形与翅果的变异研究

中文摘要8-10
ABSTRACT10-12
1 引言13-23
    1.1 彩叶植物概述13
    1.2 国内外彩叶植物的研究进展13-14
    1.3 彩色叶的形成原因14-18
        1.3.1 矿质营养元素对彩叶植物叶色的影响14-15
        1.3.2 组织结构方面对彩叶植物颜色的影响15
        1.3.3 环境因子对彩叶植物颜色的影响15-18
            1.3.3.1 光照对叶色的影响15-16
            1.3.3.2 温度对叶色的影响16-17
            1.3.3.3 pH 对叶色的影响17-18
    1.4 花色素苷研究概况18-20
    1.5 叶片变色的生理生化研究20-21
    1.6 槭树属分类与元宝枫分类学特性概况21-23
        1.6.1 槭树属分类的研究概况21-22
        1.6.2 元宝枫分类学研究概况22
        1.6.3 元宝枫观赏特性22-23
    1.7 本论文的研究目的与意义23
2 材料与方法23-33
    2.1 元宝枫叶色变化的观测调查和生理生化研究24-29
        2.1.1 试验材料24-25
            2.1.1.1 元宝枫叶色变化的观测调查材料24
            2.1.1.2 元宝枫叶片的生理生化指标研究的材料24-25
        2.1.2 试验方法25-29
            2.1.2.1 元宝枫叶色变化的观测调查25
            2.1.2.2 色差仪表色系统测定25
            2.1.2.3 叶色H、S、B 参数的测定25
            2.1.2.4 质体色素的提取与测定25-26
            2.1.2.5 花色素苷的提取26
            2.1.2.6 花色素苷稳定性测定26-27
            2.1.2.7 可溶性糖含量的提取与测定27-28
            2.1.2.8 苯丙氨酸解氨酶的提取与测定28
            2.1.2.9 叶片细胞液pH 值的测定28
            2.1.2.10 叶片相对含水量28
            2.1.2.11 数据处理28-29
    2.2 元宝枫叶片与翅果性状的变异29-33
        2.2.1 试验材料29-30
        2.2.2 试验方法30-32
            2.2.2.1 果实叶片的采集30
            2.2.2.2 翅果的测定30-31
            2.2.2.3 叶片的测定31-32
        2.2.3 数据处理32-33
3 结果与分析33-88
    3.1 元宝枫叶色变化的观测调查和生理生化研究33-74
        3.1.1 叶色变化的观测调查33-35
        3.1.2 叶色变化前期各试验指标的测定35-38
        3.1.3 色差仪表色系统测定38-43
        3.1.4 叶色H、S、B 参数的分析43-46
        3.1.5 叶片质体色素的时空变化差异分析46-49
        3.1.6 花色素苷的提取49-51
            3.1.6.1 提取溶剂的选择49-50
            3.1.6.2 提取时间的选择50-51
        3.1.7 理化因素对元宝枫叶片花色素苷稳定性的影响51-53
        3.1.8 花色素苷含量的时空变化差异分析53-55
        3.1.9 元宝枫叶片中可溶性糖含量的时空变化差异分析55-57
        3.1.10 苯丙氨酸解氨酶(PAL)活性的提取与测定57-62
        3.1.11 叶片相对含水量62-63
        3.1.12 花色素苷含量与颜色属性的相关性分析63-66
        3.1.13 各因素之间相关性分析66-68
        3.1.14 各因素主成分分析68-72
        3.1.15 气候情况对元宝枫叶色变化的影响72-74
    3.2 元宝枫叶片与翅果性状的变异74-88
        3.2.1 方差分析74-77
            3.2.1.1 种翅比的方差分析74-76
            3.2.1.2 叶基角方差分析76
            3.2.1.3 种翅比与叶基角两性状相关性分析76-77
        3.2.2 遗传性状的分析77-79
        3.2.3 性状主成分分析79-82
        3.2.4 性状聚类分析82-88
4 讨论88-94
    4.1 元宝枫叶色变化的观测调查和生理生化的讨论88-92
        4.1.1 元宝枫叶色变化的讨论88
        4.1.2 生长季节叶片内物质变化88-89
        4.1.3 叶片表色系统的讨论89-90
        4.1.4 秋季叶色变化过程中有关生理生化的指标变化90
        4.1.5 花色素苷生理生化特性的讨论90-91
        4.1.6 元宝枫颜色属性及叶片中各物质的相关性讨论91-92
    4.2 元宝枫叶片与翅果性状变异的讨论92-94
        4.2.1 元宝枫果实叶片性状的变异特性92
        4.2.2 元宝枫果实叶片性状的主成分分析92-93
        4.2.3 元宝枫变异类型的讨论93-94
5 结论94-96
参考文献96-104
6. 致谢104-105
7. 攻读学位期间发表论文情况105
        下载全文需50


本文地址:

上一篇:基于文化特色的公园绿地夜景照明研究
下一篇:济南滨水绿化现状与植物景观调查研究

分享到: 分享元宝枫叶色、叶形与翅果的变异研究到腾讯微博           收藏
评论排行
公告