粗山羊草遗传多样性及与普通小麦D组染色体多样性比较研究

Analysis on the Genetic Diversity of Aegliops Tauschii and the Comparison with D Genome of Wheat

作者: 专业:作物遗传育种 导师:李安飞 年度:2010 学位:硕士  院校: 山东农业大学

Keywords

Ae.tauschii, SSR, Genetic diversity, wheat D genome

        粗山羊草(Aegilops tauschill,2n=2x=14, DD)是小麦属的一个二倍体物种,具有高抗白粉病、条锈病、秆锈病,抗低温和抗穗发芽等优良特性,并且仅有特定区域的少数粗山羊草基因型参与了普通小麦的起源,其遗传变异类型远比普通小麦D染色体组丰富,是普通小麦遗传改良的重要基因资源。本研究利用定位在小麦D染色体上的40对SSR引物对206份粗山羊草DNA分子水平的遗传多样性以及与普通小麦D染色体组遗传多样性的差异进行了分析与评价,以期为进一步研究和利用粗山羊草改良小麦奠定基础。主要研究结果如下:(1)PCA分析结果和基于UPGMA聚类结果表明,206份粗山羊草从分子水平上可以分为两个亚种。穗部拉长呈圆柱形的为tauschii亚种,穗部明显呈念珠形的为strangulata亚种,这与传统的分类方式一致。穗部介于圆柱形和念珠形的材料在两亚种中均有分布,并且仅从穗部特征上无法明确分类。(2)选用分布在粗山羊草7对染色体上的40对SSR引物,对不同来源的206份粗山羊草材料进行遗传分化及多样性分析,结果表明在40个SSR位点中,共检测出276个等位变异,平均每个位点6.8780个,变异范围为4-12个。遗传多样性指数PIC平均值为0.8721,变异范围为0.6162-0.9722,PIC最高的是gdm61,为0.9722,最低的是gdm8,为0.6162。Shannon多样性指数I变化范围为0.9429-1.6746,平均值为1.3977。表明本研究获得的SSR位点的遗传多样性丰富。(3)选取71份不同来源、不同年代的普通小麦和1份人工合成双二倍体,与粗山羊草染色体组进行遗传多样性比较分析,结果表明粗山羊草染色体组的遗传多样性比普通小麦D染色体组丰富。普通小麦在40个SSR位点上检测到的有效等位基因、PIC和I平均值均低于粗山羊草,分别为2.2211,0.2869和0.4634(粗山羊草分别为4.6123,0.8736,1.3839)。并且cfd168,cfd188,cfd266,gdm141,gwm182,cfd39,cfd63,gdm129, gdm292和cfd1O等位点的遗传多样性指数在普通小麦中的PIC为0。人工合成双二倍体材料TA4152-10与普通小麦遗传距离较远,可做为普通小麦遗传改良或创制遗传群体的材料使用。
    Aegliops tauschii, the donor of D genome of Triticum aestivum, is the important genetic resource for the improvement of bread wheat with valuable gene resources, it has some desirable characters such as high tillering ability, good fecundity, high protein content and excellent resistance to powdery mildew, stripe rust and stem rust, as well as tolerance to low temperature and preharvest sprouting. Aegliops tauschii, which has a few of region-specific genotypes involved in the origin of hexaploid wheat, contains much wider genetic background than wheat. In this study, the genetic diversity of different Ae. tauschii populations and the recognition of subspecific taxa and the comparison between Aegliops tauschii and wheat were investigated by 40 pairs SSR primer. The main results were describes as follows:(1) The results of PCA and UPGMA cluster analyses revealed that Aegliops tauschii has two subspecies. The accessions having markedly moniliform spikes were assigned to Ae. tauschii Coss. subspecies strangulata (Eig) Tzvel., whereas those having cylindrical spikes to Ae. tauschii Coss. subspecies tauschii. The accessions having mildly moniliform were assigned to both Ae. tauschii Coss. subspecies strangulate and Ae. tauschii Coss. subspecies tauschii, and it was difficult to identify only by spikelet-shape.(2) The genetic diversity and differentiation of 206 Aegilops tauschii accessions from all over the world, were investigated by SSR assay with 40 pairs of primers homogeneously distributed on 7 chromosomes of Ae. tauschii. The results demonstrated that 276 allelic variations were detected, with an average allelic variations number of 6.8780 and range of variation 4~12. Polymorphism information content (PIC) and Shannon’s information index (1) value were 0.8721 and 1.3977, with the variation range 0.6162~0.9272 and 0.9429~1.6746, respectively. The results indicated that Aegliops tauschii contains much wider genetic background than common wheat.(3) Genetic diversity had been compared between common wheat including one synthetic wheat and 71 wheat accessions from different origin and age and Ae. tauschii. The results indicated that the genetic diversity of Ae. tauschii was rich than common wheat. The effective number of alleles, average of PIC and I were 2.2211,0.2869 and 0.4634, respectively; whereas Ae.tauschii’s effective number of alleles, average of PIC and I were 4.6123,0.8736 and 1.3839, respectively. In addition, the PIC of cfd168, cfd188, cfd266, gdm141, gwm182, cfd39, cfd63, gdm129, gdm292 and cfd10 were 0. The genetic distance between synthetic wheat and wheat is far, and it could be used to improve the wheat or develop mapping population.
        

粗山羊草遗传多样性及与普通小麦D组染色体多样性比较研究

英文缩略表4-7
摘要7-9
Abstract9-10
1 引言11-30
    1.1 小麦的起源与进化11-13
    1.2 粗山羊草资源研究状况13-26
        1.2.1 粗山羊草的分类及分布13-14
        1.2.2 遗传多样性概念14
        1.2.3 遗传多样性的研究意义14-15
        1.2.4 粗山羊草遗传多样性及遗传标记研究进展15-26
            1.2.4.1 粗山羊草形态学研究16
            1.2.4.2 细胞学(染色体)水平研究16-17
            1.2.4.3 同工酶水平研究17-18
            1.2.4.4 分子水平研究18-26
    1.3 粗山羊草在育种中的应用26-30
2 材料与方法30-36
    2.1 实验材料30-32
    2.2 基因组DNA的提取32-33
    2.3 微卫星标记分析33-34
        2.3.1 微卫星引物33
        2.3.2 PCR反应体系33
        2.3.3 SSR扩增程序33
        2.3.4 扩增产物的检测33
        2.3.5 硝酸银染色步骤33-34
    2.4 数据统计分析34
    2.5 遗传参数分析34-36
3 结果与分析36-46
    3.1 粗山羊草遗传多样性分析36-42
        3.1.1 粗山羊草穗部类型调查分类36-37
        3.1.2 SSR分子标记的筛选37
        3.1.3 粗山羊草材料的PCA分析37-38
        3.1.4 粗山羊草材料的UPGMA聚类分析38-39
        3.1.5 SSR位点多样性分析39-40
        3.1.6 粗山羊草群体的遗传变异分析40-42
    3.2 粗山羊草与小麦D染色体组遗传多样性对比分析42-46
        3.2.1 粗山羊草与小麦SSR位点PIC值分析42-44
        3.2.2 粗山羊草D染色体组遗传多样性分析44-45
        3.2.3 普通小麦D染色体组聚类分析45-46
4 讨论46-50
    4.1 粗山羊草亚种分类46-47
    4.2 粗山羊草SSR遗传多样性47
    4.3 粗山羊草与小麦D染色体组遗传差异分析47-50
5 结论50-51
参考文献51-61
致谢61-62
攻读硕士学位期间发表的论文62
        下载全文需10


本文地址:

上一篇:中草药轮叶党参再生体系的建立
下一篇:小麦苗期性状QTL定位及株高杂种优势的遗传分析

分享到: 分享粗山羊草遗传多样性及与普通小麦D组染色体多样性比较研究到腾讯微博           收藏
评论排行
公告