首页 > 硕士 > 农学 > 正文

葡萄糖基脲类衍生物的合成及除草活性研究

Studies on Synthesis and Herbicidal Activity of Glucosyl Urea Derivatives

作者: 专业:农药学 导师:陈长水 年度:2010  院校: 华中农业大学

Keywords

        除草剂在农业生产中发挥着不可替代的作用,但是一些除草活性较高的除草剂由于本身存在的毒性和对环境的负面影响受到了限制或禁用,高效、低毒、可降解的绿色化学农药成为农药研究工作者关注的焦点。糖类物质是生物体内的可适性分子,几乎参与生命体内的所有过程,是一种重要的生物活性物质。本论文提出以甲壳素的最终降解产物2-脱氧-β-D-氨基葡萄糖来修饰除草剂功能分子,经化学改造,将糖分子引入到脲类除草剂的分子结构中,合成了一系列N-2-脱氧-β-D-葡萄糖基脲类衍生物,并通过除草活性测试对其进行评价。研究内容及结果如下:1.以2-脱氧-β-D-氨基葡萄糖盐酸盐为原料,采用异氰酸酯法,经羟基保护、氨基酰化等步骤,合成了14个N-2-脱氧-β-D-葡萄糖基脲衍生物,其中10种未见文献报道,并通过IR、1HNMR等对其进行了结构表征。结构通式如下:A1R:3,4-二甲氧基苯基A5R:3-氯-4-甲基苯基A9R:N-甲基苯基A13R:4-甲基苯基A2R:2,4-二甲基苯基A6R:2-氟苯基A10R:正二丁基A14R:4-乙氧基苯基A3R:3,5-二甲基苯基A7R:2-吡啶基A11R:苯基A4R:2-乙氧基苯基A8R:3-吡啶基A12R:3-甲基苯基2.选用单子叶植物苏丹草、黑麦草和双子叶植物白苋、油菜为供试作物,采用平皿法对合成的14个目标化合物分别在25μg/mL、50μg/mL、100μg/mL以及200μg/mL|四个梯度浓度下进行了除草活性测试,并对化合物浓度与生长抑制率的相关性进行了分析,初步研究结果表明:该类化合物的除草活性随取代基团、药剂浓度以及供试作物品种的不同而有所差别,但各化合物在供试浓度内对供试作物的生长均表现出抑制作用,高浓度时尤为明显;各化合物对根的生长的抑制作用优于对芽的生长的抑制作用且对单子叶植物的抑制作用优于对双子叶植物的抑制作用。活性数据显示:(1)各化合物在200μg/mL浓度时对苏丹草的校正根长抑制率均超过80%,其中,化合物A6在100μg/mL时对苏丹草的校正根长抑制率达到90%以上;(2)各化合物在200μg/mL浓度下对黑麦草的校正根长抑制率均达到70%以上,其中,化合物A7在100μg/mL时校正根长抑制率达到90%;(3)化合物A2、A3、A7、A11、A13在100μg/mL时对白苋的校正根长抑制率达到70%以上;(4)化合物A3、A6、A7、A13在100μg/mL时对油菜的校正根长抑制率达到70%以上。3.选择了A1、A3、A13、A14四个化合物进行脱乙酰基保护得到B1、B3、B13、B14。在相同条件下进行除草活性对比实验,根据对比结果得出以下结论:B类化合物结构中苯环上连有吸电子基团时,能提高其抑制活性;当苯环上连有给电子基团时,其抑制活性情况会因取代基位置的不同而不同。但有关糖基上保护与脱保护对除草活性的影响有待进一步深入研究。糖分子修饰脲类化合物,符合绿色化学农药的发展趋势;其相关研究对丰富脲类农药结构理论及探索新型农药先导化合物具有较大意义。
    Herbicide plays an irreplaceable role in agricultural production, but some herbicides with high herbicidal activity have been limited or prohibited to use because of their own toxicities and negative impacts on the environment, so, high efficient, low toxic and biodegradable green chemical pesticides become the focus of Pesticide researchers’attention. Carbohydrate is a kind of adaptive molecules in vivo, which almost involved all life processes in vivo, they are important bioactive substances. This thesis present the ultimate degradation products of chitin—2-deoxy-β-D-glucosamine to modify herbicide functional molecules, after chemical modification, we introduced sugar molecular into the structure of urea herbicide, synthesized a series of N-2-deoxy-β-D-glucosyl urea derivatives and then evaluated the herbicidal activities of these compounds. Contents and results of this thesis are as follows:1. To use 2-deoxy-β-D-glucosamine hydrochloride as raw materials, after hydroxyl protection, acylation and other steps, we obtained 14 N-2-deoxy-β-D-glucoyl urea derivatives by isocyanate method, of which 10 species have not been reported, and the compounds were characterized by IR,1HNMR. Structured as follows: A1R:3,4-dimethyl-phenyl A5R:3-chloro-4-methyl-phenyl A12R:3-methyl-phenyl A2R:2,4-dimethyl-phenyl A6R:2-fluoro-phenyl A9R:N-methyl phenyl A13R:4-methyl-phenyl A3R:3,5-dimethyl-phenyl A7R:2-pyridyl A10R:n-(Bu)2- A14R:4-ethoxy-phenyl A4R:2-4-ethoxy-phenyl A8R:3-pyridyl A11R:phenyl2. We selected monocotyledon Sorghum sudanense Stapf. and Lolium perenne L., dicotyledon Brassica campestris L. and Amaranthus albus L. as tested crops, then conducted preliminary herbicidal activity tests by the plate method to the synthesized 14 compounds in 25μg/mL,50μg/mL,100μg/mL and 200μg/mL 4 gradient concentrations, and analyzed the correlation between the concentrations and growth inhibition rates. The preliminary results showed that the herbicidal activity of the compounds varied with the differences of alkyls, pharmaceutical concentrations and tested crops varieties, however, all the compounds showed an inhibitory effect to growth of the tested crops at tested concentrations, particularly at high concentration. And by compared the data of each group, we knowed that the inhibitory effects of compounds on root growth were better than on sprout, on monocotyledon better than on dicotyledonous. Shown as the activity data:(1) The calibrated root length inhibition rate of Sorghum sudanense Stapf. exceeded 80% at 200μg/mL of every compound, which, the calibrated root length inhibition rate reached over 90% at 100μg/mL of compound A6;(2) The calibrated root length inhibition rate of Lolium perenne L. exceeded 70% at 200μg/mL of every compound, which, the calibrated root length inhibition rate reached 90% at 100μg/mL of compound A7;(3) The calibrated root length inhibition rate of Amaranthus albus L. reached over 70% at 100μg/mL of A2, A3, A7, A11 and A13;(4) The calibrated root length inhibition rate of Brassica campestris L. exceeded 70% at 100μg/mL of A3, A6, A7 and A13.3. We selected compound A1, A3, A13 and A14 to deprotect the acetyls on sugar ring and got B1, B3, B13 and B14. We conducted herbicidal activity tests under the same condition as compounds A, according to the rusults of comparation, we got following conclusions:when the compounds B had electron-attracting groups on benzene, the inhibitory activity would be raised; when had electron-rejected groups, the conclusion might be different because of the substituents’places. So, the relationship between the herbicidal activity with the deprotection of the acetyls on sugar ring or not needs further studies.The idea of modified urea with sugar is consistent with the development trend of green chemical pesticide. The related reseach to modify urea with sugar is of great significance on riching urea pesticide structure theory and on exploring new leader compounds.
        

葡萄糖基脲类衍生物的合成及除草活性研究

摘要6-8
ABSTRACT8-9
第1章 绪论10-22
    1.1 除草剂研究进展10-14
        1.1.1 除草剂的地位及意义10-11
        1.1.2 除草剂的发展历程11-12
        1.1.3 除草剂未来之发展趋向12-14
    1.2 绿色化学农药的设计理念14-16
        1.2.1 强化绿色化学理念14
        1.2.2 合理设计目标分子14-16
        1.2.3 进行优化筛选16
        1.2.4 应用绿色化学技术16
    1.3 选题背景16-21
        1.3.1 取代脲类除草剂16-17
            1.3.1.1 取代脲类化合物16-17
            1.3.1.2 取代脉类除草剂17
        1.3.2 含糖结构农药简介17-19
        1.3.3 2-脱氧-β-D-氨基葡萄糖及其主要衍生物的应用19-21
    1.4 研究的目的及意义21-22
第2章 N-2-脱氧-β-D-葡萄糖脲衍生物的合成22-38
    2.1 实验仪器及主要试剂22-23
        2.1.1 实验仪器22
        2.1.2 主要试剂22-23
    2.2 N-(1,3,4,6-四-O-乙酰基)-β-D-葡萄糖脲的合成23-35
        2.2.1 中间体1,3,4,6-四-O-乙酰基-β-D-氨基葡萄糖盐酸盐的合成23-24
        2.2.2 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-(3,4-二甲氧基)苯基脲的合成24-25
        2.2.3 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-(2,4-二甲基)苯基脲的合成25-26
        2.2.4 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N’-(3,5-二甲基)苯基脲的合成26
        2.2.5 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-(2-乙氧基)苯基脲的合成26-27
        2.2.6 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-(3-氯-4-甲基)苯基脲的合成27-28
        2.2.7 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-(2-氟)苯基脲的合成28-29
        2.2.8 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N’-2-吡啶基脲的合成29-30
        2.2.9 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-3-吡啶基脲的合成30-31
        2.2.10 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N'-甲基苯基脲的合成31
        2.2.11 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N',N’-二正丁基脲的合成31-32
        2.2.12 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N’-苯基脲的合成32-33
        2.2.13 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N’-(3-甲基)苯基脲的合成33-34
        2.2.14 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N’-(4-甲基)苯基脲的合成34
        2.2.15 N-(1,3,4,6-四-O-乙酰基)-2-脱氧-β-D-糖基-N’-(4-乙氧基)苯基脲的合成34-35
    2.3 脱乙酰基葡萄糖脲的合成35-37
        2.3.1 合成路线35
        2.3.2 合成步骤35-36
        2.3.3 结果分析36-37
    2.4 本章总结37-38
第3章 除草活性测试38-61
    3.1 引言38
    3.2 室内除草活性测试38-39
        3.2.1 供试作物38
        3.2.2 实验药剂的配制38
        3.2.3 实验方法38-39
    3.3 活性测试结果与分析39-59
        3.3.1 各化合物对苏丹草生长影响39-44
        3.3.2 各化合物对黑麦草生长影响44-49
        3.3.3 各化合物对白苋生长影响49-54
        3.3.4 各化合物对油菜生长影响54-59
    3.4 本章总结59-61
第4章 结论与展望61-63
    4.1 全文总结61
    4.2 展望61-63
参考文献63-68
附录68-79
致谢79
        下载全文需79


本文地址:

上一篇:无机粉体填充PBA/淀粉互穿聚合物网络材料的合成
下一篇:生物医用聚氨酯材料的合成及蛋白质吸附研究

分享到: 分享葡萄糖基脲类衍生物的合成及除草活性研究到腾讯微博           收藏
评论排行
频道总排行
频道本月排行
(); var h = cur.height(); $(this).find('.img-wrap img').LoadImage(true, w, h,'http://www.fabiao.net/statics/images/msg_img/loading.gif'); }); }) var _bdhmProtocol = (("https:" == document.location.protocol) ? " https://" : " http://"); document.write(unescape("%3Cscript src='" + _bdhmProtocol + "hm.baidu.com/h.js%3F4fe77876a18891357653cdbbd216a6a3' type='text/javascript'%3E%3C/script%3E"));
-葡萄糖基脲类衍生物的合成及除草活性研究-ѯ