首页 > 硕士 > 工学 > 正文

压电式六维大力值测力仪关键技术的研究

Study of Key Technology of Piezoelectric Six-axis Heavy Force Dynamometer

作者: 专业:机械电子工程 导师:孙宝元 年度:2010 学位:硕士  院校: 大连理工大学

Keywords

Piezoelectric Quartz, Six-axis Force, Axial Load-distribution, Lateral Load-distribution, Ear-shape

        在当今的装备制造业中,巨型重载制造装备是制造产业链中的基础装备.为了提高生产效率,要求操作装备与制造装备协调工作,这就需要对操作装备操作臂上的动态六维力进行实时测量。传统的动态六维大力测力仪通常是对巨型重载操作装备的大载荷先分载然后进行测量。本文在国家973项目基金(2006CB705406)的资助下,主要研究了轴用压电式六维大力值测力仪的关键技术:分析了各向分载原理并推导了各向分载比公式,研制了一种耳翼型轴用压电式六维大力值测力仪,设计了一种可调量程六维力测力仪,并解决了该类测力仪设计中横向量程与轴向量程不可调和的矛盾。通过对轴用压电式六维大力值测力仪分载进行研究,建立了相应的理论结构模型,分别利用变形连续且满足应变协调方程的假设与等效弯曲的当量轴假设,解释并推导出了测力仪的轴向、横向理论分载比公式,根据该类测力仪六维力测量原理,推导出了各向力矩分载比公式;利用ANSYS软件进行仿真分析,修正了理论分载比公式。设计了传感器与测力仪的静态标定实验,并对修正后的分载比公式进行了验证,结果表明,由该公式计算的分载比能够很好的与实验结果吻合,轴向分载比相对误差为1.5%,横向分载比相对误差为2.53%。依据该分载比公式,可通过选择合适的参数设计预定分载比的测力仪,避免了以往设计的盲目性,提高整个测力仪的设计效率,并为测力仪的优化提供了理论依据。根据各向分载比理论公式,对影响各向分载比的因素进行分析,设计并研制了一种耳翼型轴用六维大力值测力仪,利用ANSYS软件进行了尺寸优化。与旧式圆形结构测力仪相比,相同外缘尺寸下,耳翼型结构测力仪轴向测力量程增大了55.27%,横向测力量程增大了12.7%,体积则减小了48.23%。提出了一种可调量程的六维力测力仪,解决了该类测力仪的轴向量程与横向量程之间的固有矛盾,实现了同一个测力仪能够进行变量程测量,大大减少了测力仪的成本,为该类测力仪的产品化提供了理论依据。
    In the current equipment manufacturing industry, the huge heavy-load manufacturing equipment is the basic equipment of manufacturing industry chain. In order to increase the production efficiency, the operation equipment should coordinately work with manufacturing equipment, which needs to measure the dynamic six dimension force of operation equipment. The traditional way is to measure the force distributed from the heavy-force operating equipment.Funded from the national 973 project, this paper mainly studies some key technologies of piezoelectric six-axis heavy force dynamometer on shafts:analyze the principle of load-distribution of the dynamometers, design and manufacture a ear-shape piezoelectric six-axis heavy force dynamometer on shafts, design a dynamometer which have some different measuring range and solve the contradiction between the axial measuring range and lateral measuring range of the dynamometer.We analyze the load-distribution principles of the dynamometer, build the corresponding mechanical models, and derive theoretical formulas of load-distribution ratio based on mechanics of materials and structural mechanics. Then, we analyze the mechanical models of the fixtures by ANSYS software and modify axial load-distribution ratio formula. Design a static calibration experiments and calibrate sensors and the dynamometer. Results show that the theoretical load-distribution is corresponding with the experimental load-distribution, with axial error 1.5% and lateral error 2.53%. And the formulas of load-distribution radio can provide a reference basis for the design of piezoelectric six-axis heavy force dynamometers on shafts, which is helpful for increments of efficiency in designing the dynamometer.Based on the formulas of load-distribution, we analyze main parameters related to load-distribution ratio and design a ear-shape piezoelectric six-axis heavy force dynamometer on shafts. Then, make a size optimization about it by ANSYS software. The experimental results show that the measuring range of the dynamometer increases 55.27% than circle-shape dynamometer in axial direction, and increases 12.7% in lateral direction. But its volume is reduced by 48.23%.Put forward a six-axis force dynamometer with adjustable measuring range. Solve the contradiction between the axial measuring range and lateral measuring range of dynamometer and realize that a dynamometer can measure forces of different measuring ranges, greatly reducing the cost of manufactory of such dynamometers.
        

压电式六维大力值测力仪关键技术的研究

摘要4-5
Abstract5-6
1 绪论10-16
    1.1 课题的来源及意义10-11
    1.2 国内外研究概况及发展趋势11-15
        1.2.1 大力值传感器的发展与现状11
        1.2.2 六维力传感器的发展与现状11-15
    1.3 课题的主要研究内容15-16
2 测力仪轴向分载原理分析16-27
    2.1 三向力传感器的结构及测量原理16-18
        2.1.1 xy单元晶组16
        2.1.2 yx单元晶组16-18
    2.2 轴向分载原理18-19
    2.3 轴向分载比公式19-21
    2.4 轴向分载ANSYS分析21-24
    2.5 影响轴向分载的因素24
    2.6 实验验证24-27
        2.6.1 实验验证原理24-25
        2.6.2 实验设计25-26
        2.6.3 实验结果26-27
3 测力仪横向分载原理分析27-39
    3.1 横向分载原理27
    3.2 横向分载比公式27-29
        3.2.1 晶组端面横向力的弯曲分量27-28
        3.2.2 晶组端面横向力的剪切分量28-29
    3.3 横向分载ANSYS分析29-30
    3.4 影响横向分载的因素30-31
    3.5 实验验证31-32
    3.6 误差分析32-33
        3.6.1 原理性误差32
        3.6.2 实验误差32-33
    3.7 其他各向分载比公式33-38
        3.7.1 倾覆力矩分载比公式35-36
        3.7.2 转矩分载比公式36-38
    3.8 小结38-39
4 大力值测力仪设计39-57
    4.1 测力仪壳体设计39-45
        4.1.1 测力仪壳体材料的选择39
        4.1.2 下体形状的确定39-42
        4.1.3 分载环设计42-43
        4.1.4 耳翼的设计43-45
        4.1.5 上盖的设计45
        4.1.6 上盖、下体厚度确定45
    4.2 测力仪结构优化45-49
        4.2.1 确定优化变量46-47
        4.2.2 参数化建模47-49
        4.2.3 优化结果分析49
    4.3 力敏元件的空间布局49-50
    4.4 预紧方式50-51
    4.5 密封方式51
    4.6 实验验证51-57
        4.6.1 静态性能标定51-55
        4.6.2 动态性能标定55-57
5 可调量程测力仪设计57-63
    5.1 设计背景57
    5.2 关键部件的设计57-60
        5.2.1 传感器安装位置设计58-59
        5.2.2 系列模块化的分载环设计59-60
        5.2.3 定位环的设计60
    5.3 大力值夹具的选取60-61
    5.4 横向分载与轴向分载的矛盾61-63
结论63-64
参考文献64-66
附录A 程序66-75
附录B 部分实物图75-77
攻读硕士学位期间发表学术论文情况77-78
致谢78-80
        下载全文需50


本文地址:

上一篇:换向器滚压加工过程检测系统研究
下一篇:基于虚拟样机技术的硅片磨床进给系统机电协同仿真

分享到: 分享压电式六维大力值测力仪关键技术的研究到腾讯微博           收藏
评论排行
公告