首页 > 硕士 > 理学 > 正文

反应磁控溅射制备组分可控的B-C-N薄膜

Controllable Compositions of B-C-N Films Synthesized by Reactive Magnetron Sputtering

作者: 专业:凝聚态物理 导师:赵纪军 年度:2010 学位:硕士  院校: 大连理工大学

Keywords

B-C-N film, composition, experimental parameter, magnetron sputtering

        采用射频磁控溅射方法,以硼和石墨为溅射靶材,通过调控工作气压、基片温度、溅射功率、CH4/N2/Ar气体流量比一系列实验参数,在Si(100)基片上制备不同组分的非晶B-C-N薄膜。利用傅里叶变换红外光谱(FTIR), X射线衍射(XRD),X射线光电子能谱(XPS)和纳米压痕测试仪测试方法,分别对B-C-N薄膜的结构,化学组分和硬度进行表征。主要工作如下:(1)红外光谱和X射线衍射图谱表明,我们制备的B-C-N薄膜是B、C、N原子级结合的化合物。在较低范围内同时增加石墨和硼靶溅射功率,单独增加石墨靶溅射功率或者增加基片温度有助于B-C-N薄膜各种化学键的形成;在N2/Ar混合气体中引入CH4或者增大工作气压有利于C=C键的形成;而增大硼靶溅射功率反而不利于薄膜的成键。因此,改变不同的实验参数可以调节B-C-N薄膜的成键状态。(2)在B-C-N三元相图中,大部分制备的薄膜组分沿C-BN等电子浓度线分布。其中,减小N2/Ar流量比、同时增加硼和石墨靶功率或者增加基片温度可以得到较低C含量的组分;而那些较高C含量的组分可以在N2/Ar混合气体中引入CH4来实现。所以,调节一组实验参数可以控制B-C-N薄膜的组分。(3)通过对基片进行研磨预处理并不能改善B-C-N薄膜的硬度,薄膜的硬度受膜基界面的机械处理影响很小。红外光谱分析显示,B-C-N薄膜硬度与成键类型紧密相关。
    By adjusting a series of experimental parameters, such as working pressure, substrate temperature, sputtering power, and CH4/N2/Ar flow ratio, amorphous B-C-N films with various compositions were synthesized on silicon (100) substrate via radio frequency magnetron sputtering. The structure, chemical compositions, and hardness of B-C-N films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nanoindentation techniques. The main work is given below:(1) FTIR spectra and XRD patterns reveal that all these synthesized B-C-N films are atomic-level hybrids composed of B, C and N atoms. Among them, various chemical bonds can be enhanced by increasing the substrate temperature, increasing the sputtering power of single graphite target, or increasing the sputtering power of boron and graphite targets simultaneously in a lower range; the C=C bond can be strengthened by increasing the working pressure, or introducing the CH4 gas into the mixture of N2/Ar; however, high sputtering power of boron target is detrimental to the formation of chemical bonds in B-C-N films. Therefore, the chemical bonds states can be tuned by varying different experimental parameters.(2) On the B-C-N ternary phase diagram, the chemical compositions of most synthesized films distribute along the C-BN isoelectronic line. Among them, the low-carbon compositions can be obtained by decreasing the N2/Ar flow ratio, increasing the power of boron and graphite targets simultaneously, or increasing the substrate temperature; those carbon-rich ones can be prepared by introducing the CH4 gas into the mixture of N2/Ar reactive gas. Therefore, it is possible to control the compositions of B-C-N films by adjusting a set of experimental parameters.(3) Hardness of these synthesized B-C-N films is hardly dependent on the substrate pretreatment, but determined by the bond type as the result of FTIR analysis.
        

反应磁控溅射制备组分可控的B-C-N薄膜

摘要4-5
Abstract5
1 绪论8-19
    1.1 B-C-N三元化合物的研究背景8-10
        1.1.1 金刚石与立方氮化硼9-10
        1.1.2 石墨与六方氮化硼10
    1.2 B-C-N三元化合物的研究概况10-19
        1.2.1 B-C-N三元化合物的理论研究10-13
        1.2.2 B-C-N三元化合物的实验合成13-16
        1.2.3 B-C-N三元化合物的性能研究16-19
2 B-C-N薄膜的表征方法19-23
    2.1 X射线衍射谱(XRD)19
    2.2 傅立叶变换红外光谱(FTIR)19-20
    2.3 X射线光电子能谱(XPS)20-21
    2.4 纳米压痕测试仪21-23
3 反应磁控溅射制备B-C-N薄膜的原理与工艺23-29
    3.1 射频磁控溅射沉积系统简介23-25
    3.2 磁控溅射原理25-26
    3.3 B-C-N薄膜的制备工艺26-29
        3.3.1 实验所用靶材与反应气体26-27
        3.3.2 基片的选择27
        3.3.3 B-C-N薄膜的具体沉积参数27-28
        3.3.4 B-C-N薄膜的制备过程28-29
4 不同实验参数对B-C-N薄膜成键状态的影响29-36
    4.1 X射线衍射谱29
    4.2 红外光谱29-35
        4.2.1 同时改变硼石墨靶溅射功率下B-C-N薄膜的红外光谱30
        4.2.2 不同CH4/N2/Ar流量比下B-C-N薄膜的红外光谱30-31
        4.2.3 不同工作气压下B-C-N薄膜的红外光谱31-32
        4.2.4 不同基片温度下B-C-N薄膜的红外光谱32-33
        4.2.5 不同石墨靶溅射功率下B-C-N薄膜的红外光谱33-34
        4.2.6 不同硼靶溅射功率下B-C-N薄膜的红外光谱34-35
    4.3 本章小结35-36
5 不同实验参数对B-C-N薄膜组分的影响36-44
    5.1 X射线光电子能谱36-38
    5.2 B-C-N薄膜组分与实验条件的关系38-43
        5.2.1 工作气压对B-C-N薄膜组分的影响40-41
        5.2.2 基片温度对B-C-N薄膜组分的影响41
        5.2.3 溅射功率对B-C-N薄膜组分的影响41-42
        5.2.4 CH_4/N_2/Ar流量比对B-C-N薄膜组分的影响42-43
    5.3 本章小结43-44
6 B-C-N薄膜硬度的研究44-46
    6.1 基片研磨对B-C-N薄膜硬度的影响44
    6.2 B-C-N薄膜硬度与成键类型的关系44-45
    6.3 本章小结45-46
结论46-47
参考文献47-53
致谢53-55
        下载全文需55


本文地址:

上一篇:ZnO薄膜的水溶液法制备及Li~+、柠檬酸钠对ZnO生长的影响
下一篇:无界柱形区域上椭圆型方程组正解的存在性和对称性

分享到: 分享反应磁控溅射制备组分可控的B-C-N薄膜到腾讯微博           收藏
评论排行
公告