首页 > 硕士 > 理学 > 正文

电弧离子镀内孔镀膜研究

Study on Films Deposited in Internal Holes by Arc Ion Plating

作者: 专业:等离子体物理 导师:林国强 年度:2010 学位:硕士  院校: 大连理工大学

Keywords

arc ion plating, internal hole, pulsed bias, magnet field, density of plasma

        内孔镀膜问题是当今表面工程领域亟待解决的重要问题之一,技术难点在于等离子体不能有效地输运到内孔深处,导致镀膜深度较小、质量较差。提高孔内部等离子体密度是内孔沉积高质量薄膜的前提,通过等离子体内引等手段能有效提高孔内部等离子体密度,获得性能良好的薄膜,从而提高工程应用中有内孔工件的使役寿命。等离子体对于磁场有着很强的敏感性,镀膜的工艺方法对于等离子体行为也有着较大的影响,本文从外加磁场和偏压形式两方面入手,进行内孔镀膜实验研究,从而达到等离子体内引的目的。论文设计了三部分实验:一部分对规格为Φ50mm×200mm×5mm的盲管分别施加直流偏压、脉冲偏压、脉冲偏压加磁场在其内壁沉积TiN薄膜,另一部分在脉冲偏压基础上添加永磁体在规格为10mm×10mm×50mm的方口模具内壁沉积DLC薄膜,考察脉冲偏压和外加磁场对内孔镀膜实验的影响;最后一部分又进行了等离子体诊断辅助实验,进一步去验证外加磁场带来的等离子体密度改变对内孔镀膜实验的影响。实验结果表明,按照显微硬度不低于20GPa划分,深管内壁沉积TiN薄膜在直流偏压、脉冲偏压、脉冲偏压加磁场获得的深径比(既镀膜深度与管口径之比)分别为1:1、1.4:1、2:1,呈递增趋势;按照膜厚不明显陡降区域划分,深孔模具内壁沉积DLC薄膜外加磁场情况下获得的深径比为2.0,比未加磁场提高30%;未加磁场时沉积腔室中等离子体密度约为4.2×1010cm-3,添加磁场后等离子体密集区密度高达9.2×1010cm-3;说明采用磁场与脉冲偏压优化组合的工艺方法,能够达到等离子体内引从而提高镀膜质量的目的。
    At present, depositing film in internal holes is an important problem in the field of surface engineering, which is needed to be solved immediately. The difficulty in technology is that plasma can’t be transported in internal holes efficiently, which results in the small deposition depth and poor film quality. Enhancing the density of plasma in the hole could improve the quality of deposited films. The density of plasma in holes can be efficiently enhanced by pulling plasma into the hole. The film with high quality can be obtained, which could improve the life of the workpieces with internal holes. Plasma is very sensitive to the magnet field. The deposition parameters also greatly influence the plasma behaviors. In this paper, on the basis of external magnet field and the form of pulsed bias, study on the film deposition in internal holes is conducted in order to pulling plasma into holes.Three experiments are designed and carried out. The first one is depositing TiN film in the internal hole of blind tube with the size of 50mm×200mm×5mm. The tube is applied with direct current bias, pulsed bias and pulsed with magnet field respectively. The second experiment is depositing DLC film in the internal hole of square mould with the size of 10mm×10mm×50mm. The mould is applied with pulsed bias and permanent magnet in order to investigate the influence on the film deposition in holes. The last experiment is making a plasma diagnosis. The diagnosis is carried out to identify the influence on the film deposition in internal holes induced by the variation in density of plasma due to the additional magnet fields.The experimental results show that for those TiN films deposited in the internal holes with more than 20GPa hardness, the ratios of depth and diameter reach 1:1,1.4:1 and 2:1 respectively under the condition of direct current bias, pulsed bias and pulsed with magnet field. For those DLC films deposited in the internal holes with no obvious decrease in thickness, the ratio of depth and diameter gets to 2.0 under the condition of additional magnet field, which is enhanced by 30%. The density of plasma in the chamber under the condition of no magnet field is 4.2×1010 cm-3, and the density of plasma increases to 9.2×1010 cm-3 by adding the magnet field. It explains that adopt the optimization of magnetic field and pulsed bias can lead to plasma to improve the coating quality.
        

电弧离子镀内孔镀膜研究

摘要4-5
Abstract5
1 绪论9-15
    1.1 研究背景9
    1.2 电弧离子镀9-11
    1.3 脉冲偏压电弧离子镀11-13
    1.4 典型的硬质薄膜13-14
        1.4.1 TiN薄膜13
        1.4.2 DLC薄膜13-14
    1.5 本论文的研究内容14-15
2 实验设备与实验方法15-20
    2.1 实验设备15-16
    2.2 实验设计16-17
    2.3 薄膜表征方法17-20
        2.3.1 薄膜厚度的检测17
        2.3.2 扫描电镜17-18
        2.3.3 X射线衍射18
        2.3.4 硬度的测量18-20
        2.3.5 Raman光谱20
3 内孔镀膜实验研究20-39
    3.1 深管内壁TiN薄膜沉积20-30
        3.1.1 TiN薄膜的制备20-23
        3.1.2 深管内壁TiN薄膜的厚度分布23-24
        3.1.3 深管内壁TiN薄膜的表面形貌24-26
        3.1.4 深管内壁TiN薄膜的相结构26-29
        3.1.5 深管内壁TiN薄膜的显微硬度29-30
    3.2 深孔内壁DLC薄膜沉积30-38
        3.2.1 DLC薄膜的制备30-32
        3.2.2 深孔内壁DLC薄膜的宏观照片32-33
        3.2.3 深孔内壁DLC薄膜的厚度33-36
        3.2.4 深孔内壁DLC薄膜的拉曼光谱36-37
        3.2.5 深孔内壁DLC薄膜的纳米硬度和弹性模量37-38
    3.3 本章小结38-39
4 理论分析与等离子体诊断辅助实验39-51
    4.1 实验现象的理论分析39-41
    4.2 静电探针介绍41-43
        4.2.1 探针发展简史41
        4.2.2 探针技术的特点和发展方向41-43
    4.3 郎缪尔双探针原理43-44
    4.4 离散傅里叶变换平滑方法44-45
    4.5 诊断实验设计45-47
    4.6 诊断实验结果47-49
    4.7 本章小结49-51
结论51-52
展望52-53
参考文献53-55
攻读硕士学位期间发表学术论文情况55-56
致谢56-58
        下载全文需50


本文地址:

上一篇:立体选择性芴酮还原菌株的筛选及其关键酶的分离
下一篇:聚变装置中边界等离子体的磁鞘层特性

分享到: 分享电弧离子镀内孔镀膜研究到腾讯微博           收藏
评论排行
公告