纳米金修饰电极的制备与应用研究

Application of Gold Nanoparticles Modified Electrode in Bioelectroanalysis

作者: 专业:分析化学 导师:冶保献 年度:2010 学位:硕士  院校: 郑州大学

Keywords

gold nanoparticles, self-assembly, serotonin, guanine, adenine

        化学修饰电极作为电化学和电分析化学的前沿领域自70年代以来一直被不断研究。目前已被广泛应用于生命科学、环境科学、分析科学、材料科学等许多方面。电极表面修饰的媒介体可以加速被测物质氧化还原电子传递的速度以实现电催化反应。纳米材料由于粒径小而产生很多特异性,纳米金由于其良好的生物共容性和优越的催化性能成为近年来被广泛关注的纳米材料之一。本文利用纳米金作为修饰材料制备修饰电极并进行以下三方面的研究:1.采用电化学方法将纳米金层层自组装为纳米金/L-半胱氨酸/玻碳电极(GNP/LC/GCE),并对血清素(5-HT)进行分离测定,考察了扫速等对5-HT响应的影响,并计算了5-HT在纳米金修饰电极上的电极反应动力学参数。研究表明该电极对5-HT的氧化有明显催化作用,在6×10-8-6×10-6mol/L范围内5-HT氧化峰电流与浓度有良好的线性关系。最低检测限为2×10-8mol/L。抗坏血酸(AA)叶酸(FA)肾上腺素(EP)的同时存在都对测定无干扰,对人体血清样品中5-HT的含量进行测定,平均回收率为104.67%,相对标准偏差为2.49%。2.研究了鸟嘌呤在纳米金修饰电极上的电化学行为,考察了扫速的影响并计算了相关电极反应动力学参数。与玻碳电极相比,纳米金修饰电极显著提高了鸟嘌呤的氧化峰电流,使得测定灵敏度大大提高。对富集电位和时间等实验条件进行优化,在最佳条件下测定鸟嘌呤氧化峰电流与浓度线性范围较宽,为9×10-8~2.9×10-5mol/L,最低检测限为7×10-8mol/L。100倍Na+, K+, Cl-, SO42和等浓度的尿酸、抗坏血酸对测定没有干扰。对人体血清样品中鸟嘌呤的含量进行测定,平均回收率为104.92%,相对标准偏差为2.74%。3.对腺嘌呤在纳米金修饰电极上的电化学行为进行了考察并对相关电极反应动力学参数进行计算。腺嘌呤在纳米金修饰电极上有很好的电化学响应,对实验条件进行优化后测定腺嘌呤氧化峰电流与浓度线性范围为9×10-8~3×10-6mol/L,最低检测限为7×10-8mol/L。100倍Na+, K+, Cl-, SO42-,10倍的鸟嘌呤和等浓度的尿酸、抗坏血酸对测定没有干扰。该电极可以很好的实现鸟嘌呤和腺嘌呤的分离。对人体血清样品中鸟嘌呤的含量进行测定,平均回收率为101.28%,相对标准偏差为1.74%。
    The chemically modified electrodes have been duratived reported since they were developed in the middle of 1970’S. It has been widely applied in many areas such as life science, environmental science, analytical science and material science, etc. When some mediators were modified on the electrode, it could be used to facilitate the electron transfer and catalyse the electrochemical reaction. Small size of nano-materials produced many specific phenomena. Gold nanoparticles has been widespread concerned in recent years because of its excellent biological total capacitance and superior catalytic performance. The main works in this thesis include:(1) Gold nanoparticles (GNP) were self-assembled to a L-cysteine modified glassy carbon electrode, which was as a new voltammetric sensor for selective determination of serotonin in human blood serum. This sensor shows a linear voltammetric response for serotonin in the concentration range of 6.0×10-8 to 6×10-6 mol L-1 with detect limit of 2×10-8 mol L-1. The established method possesses excellent selectivity for determination of serotonin in spite of the presence of dopamine, epinephrine, ascorbic acid and folic acid. The veracity was estimated by detecting recovery in healthy human blood serum with average value of 104.67%.(2) The electrochemical behavior of guanine on the gold namoparticles modified electrode was investigated by cyclic voltammetry (CV). It showed that the gold nanoparticles modified electrode possesses an efficient electrocatalytic activity for the electrochemical oxidation of guanine. Differential pulse voltammetric(DPV) was used in this text. The linear range for individual measurement of guanine was 9×10-8-2.9×10-5mol/L with detection limit 7×10-8mol/L. The veracity was estimated by detecting recovery in healthy human blood serum with average value of 104.92%.(3) The electrochemical behavior of adenine on the gold namoparticles modified electrode was investigated by cyclic voltammetry (CV) and the related electrode kinetic parameters were calculated. It showed that the gold nanoparticles modified electrode possesses an efficient electrocatalytic activity for the electrochemical oxidation of guanine. Differential pulse voltammetric(DPV) was used in this text. The linear range for individual measurement of guanine was 9×10-8-3×10-6 mol/L with detection limit 7×10-8mol/L. Adenine can be well selected from guanine and other cations. The veracity was estimated by detecting recovery in healthy human blood serum with average value of 101.28%.
        

纳米金修饰电极的制备与应用研究

摘要4-5
Abstract5-6
第一章 绪论9-25
    1.1 纳米材料简介9-13
    1.2 化学修饰电极13-15
    1.3 化学修饰电极的表征15-16
    1.4 化学修饰电极的应用16-18
    1.5 纳米金修饰电极的制备与应用18-19
    1.6 研究工作设想和意义19-20
    参考文献20-25
第二章 纳米金修饰电极对血清素的分离与测定25-37
    2.1 前言25
    2.2 实验部分25-26
    2.3 结果与讨论26-34
    2.4 5-HT在纳米金修饰电极上的电极反应动力学参数34
    2.5 结论34-35
    参考文献35-37
第三章 纳米金修饰电极对鸟嘌呤的测定37-45
    3.1 前言37
    3.2 实验部分37-38
    3.3 结果与讨论38-42
    3.4 鸟嘌呤在纳米金修饰电极上的电极反应动力学参数42-43
    3.5 结论43-44
    参考文献44-45
第四章 纳米金修饰电极分离测定腺嘌呤45-53
    4.1 前言45
    4.2 实验部分45-46
    4.3 结果与讨论46-50
    4.4 腺嘌呤在纳米金修饰电极上的电极反应动力学参数50-52
    参考文献52-53
个人简历与论文发表情况53-54
致谢54
        下载全文需10


本文地址:

上一篇:苯并咪唑类卡宾钯化合物的合成及其在N-芳基化反应中的应用
下一篇:苹果中三类植物生长调节剂残留的色谱分离分析方法研究

分享到: 分享纳米金修饰电极的制备与应用研究到腾讯微博           收藏
评论排行
公告