首页 > 硕士 > 理学 > 正文

磷酸镍和羟基磷酸铜光催化剂的制备及其光催化性能的研究

Preparation And Photocatalytic Performance of Ni3(PO4)2 And Cu2(OH)PO4 Photocatalysts

作者: 专业:化学 导师:姬磊 年度:2015 学位:硕士  院校: 东北石油大学

Keywords

Ni3(PO4)2·8H2O, Cu2(OH)PO4, Cu2(OH)PO4/Ni3(PO4)2·8H2O, Photocatalysis, Composites

        随着社会和经济的迅猛发展,石油、煤炭等化石能源的大量消耗已造成严重的能源危机,生态环境也随之遭到破坏。由于资源的短缺以及对一些能源不能充分的利用,开发新能源已成为摆在全人类面前的难题。太阳能因其含量丰富,不受地理条件等因素限制,已成为一种可持续发展的清洁能源,被广泛应用到诸多领域。太阳能作为一种资源丰富的能源,不仅成本低廉,而且不会产生二次污染,利用它处理污染问题将十分理想。本文通过水热合成法合成了Ni3(PO4)2?8H2O、Cu2(OH)PO4两种磷酸盐材料,并合成了Cu2(OH)PO4/Ni3(PO4)2?8H2O复合光催化剂。并通过X-射线衍射(XRD)、UV-Vis漫反射(UV-Vis DRS)、荧光(PL)、热重(TG-DTA)、扫描电镜(SEM)等多种手段对催化剂进行评价,具体研究内容如下:(1)以Ni(NO3)2?6H2O作为Ni源,KH2PO4作为P源,采用水热合成法合成了Ni3(PO4)2·8H2O并优化了其制备条件。通过多种表征方法对催化剂的表面形貌,光学特性及晶体结构等进行了分析。并以亚甲基蓝(MB)作为模型污染物,考察了Ni3(PO4)2?8H2O光催化剂在紫外光照射下的光催化活性,通过捕获剂实验对光催化剂活性增强机理进行了深入探讨。(2)以Cu(CH3COO)2作为Cu源,(NH4)2HPO4作为P源,采用水热法合成了Cu2(OH)PO4并通过考察反应摩尔比、反应温度和反应时间对光催化活性的影响优化了其制备条件。通过XRD、SEM、PL、UV-Vis DRS等多种手段对催化剂的表面形貌,光学特性,晶体结构等进行了分析。以MB作为模型污染物,考察其在紫外光条件下的光催化活性,并通过加入牺牲剂及荧光光谱对Cu2(OH)PO4光催化剂的机理进行了深入分析。(3)将一定量的Cu2(OH)PO4投入到Ni源和P源中,制备了不同摩尔比的Cu2(OH)PO4/Ni3(PO4)2·8H2O复合光催化剂。通过XRD、SEM、UV-vis DRS等多种手段对复合催化剂的表面形貌、光学特性等进行了研究分析。以MB作为模型污染物,考察了Cu2(OH)PO4/Ni3(PO4)2?8H2O复合光催化剂在紫外光下的光催化活性,并通过加入牺牲剂及结合荧光光谱对复合光催化剂的催化机理进行了深入分析。
    With the rapid development of society and the economy, consumption of large quantities of oil, coal and other fossil fuels has caused a severe energy crisis, the ecological environment also will be destroyed. How to make full use of non-renewable resources, the development of new energy sources has become a problem in front of all mankind.The abundant solar energy, without geographical restrictions and other factors, has become a kind of clean energy for sustainable development and has been widely applied to many fields. Use of solar energy to deal with pollution problems, not only low cost, but also not produce secondary pollution, what an ideal source energy it is.In this thesis, we prepared several phosphates photocatalyst by a simple chemical etching method. The photocatalysts were characterized by X-ray diffraction(XRD), UV-vis diffuse reflection spectroscopy(DRS), photolumine-scence(PL), Thermo Gravimetry-Differential Thermal Analysis(TG-DTA) and scanning electron microscopy(SEM). The detailed works were summarized as follows:(1) The Ni3(PO4)2?8H2O were synthesized and optimize the preparation conditions by a simple hydrothermal synthesis using Ni(NO3)2?6H2O as nickel source and KH2PO4 as phosphorus source. The prepared samples were characterized by various method to investigate the structure, photocatalytic activity, morphology and the photocatalytic mechanism of photocatalysts. The photocatalytic performance of Ni3(PO4)2?8H2O was evaluated using methylene blue trihydrate(MB) as a model pollutant under ultraviolet light illumination. Radical scavenger experiments were used to investigate the mechasim of Ni3(PO4)2?8H2O photocatalyst.(2) The Cu2(OH)PO4 were synthesized and optimize the preparation conditions by a simple hydrothermal synthesis using Cu(CH3COO)2 as copper source and(NH4)2HPO4 as phosphorus source. The prepared samples were characterized by XRD, SEM, PL,UV-vis DRS and other method to investigate the structure, morphology, photocatalytic activity and the photocatalytic mechanism of photocatalysts. The effects of reaction time photocatalytic activity, ratioreaction temperature and reaction molar. The photocatalytic performance of Cu2(OH)PO4 was evaluated using methylene blue trihydrate(MB) as a model pollutant under ultraviolet light illumination. Radical scavenger experiments were used to investigate the mechasim of Cu2(OH)PO4 photocatalyst.(3) A series of Cu2(OH)PO4/Ni3(PO4)2?8H2O composite photocatalyst were using the same method for the synthesis of Ni3(PO4)2?8H2O. The difference is that after the dissolution of Ni(NO3)2?6H2O incorporation of Cu2(OH)PO4 powders prepared under optimal synthesis conditions. The prepared samples were characterized by XRD, UV-vis DRS, PL, and SEM to investigate the structure, morphology, photocatalytic activity and the photocatalytic mechanism of photocatalysts. The photocatalytic performance of Cu2(OH)PO4/ Ni3(PO4)2?8H2O composite photocatalyst was evaluated using methylene blue trihydrate(MB) as a model pollutant under ultraviolet light illumination. Radical scavenger experiments were used to investigate the mechasim of Cu2(OH)PO4/ Ni3(PO4)2?8H2O photocatalyst.
        

磷酸镍和羟基磷酸铜光催化剂的制备及其光催化性能的研究

摘要4-5
ABSTRACT5-6
创新点7-11
第一章 综述11-19
    1.1 课题研究的背景和意义11
    1.2 光催化简介11-14
        1.2.1 光催化作用机理11-13
        1.2.2 光催化中存在的问题13
        1.2.3 光催化剂中的光吸收13-14
        1.2.4 光催化剂中的电荷分离14
        1.2.5 催化剂表面的化学反应14
    1.3 提高光催化效率的途径14-17
        1.3.1 过渡金属离子掺杂14-15
        1.3.2 非金属元素掺杂15
        1.3.3 贵金属沉积15-16
        1.3.4 半导体的复合16-17
    1.4 磷酸盐材料的研究进展17-18
    1.5 研究计划18-19
第二章 实验部分19-24
    2.1 药品及仪器19-20
    2.2 催化剂的表征20-22
        2.2.1 X射线粉末衍射20
        2.2.2 紫外-可见漫反射吸收光谱20
        2.2.3 电子显微镜20-21
        2.2.4 荧光光谱21
        2.2.5 电化学测试21
        2.2.6 红外光谱21
        2.2.7 热重21-22
        2.2.8 能谱22
    2.3 光催化反应22-24
        2.3.1 光催化反应装置22-23
        2.3.2 光催化反应动力学23
        2.3.3 捕获剂实验23-24
第三章 Ni_3(PO_4)_2·8H_2O的制备表征及性能研究24-39
    3.1 引言24
    3.2 不同反应Ni/P摩尔比Ni_3(PO_4)_2·8H_2O的制备及光催化性能评价24-27
        3.2.1 样品制备步骤24
        3.2.2 光催化剂的XRD分析24-25
        3.2.3 光催化剂的微观形貌25-26
        3.2.4 光催化剂的光吸收特性26
        3.2.5 光催化活性26-27
    3.3 不同反应温度Ni_3(PO_4)_2·8H_2O的制备及光催化性能评价27-32
        3.3.1 样品制备步骤27-28
        3.3.2 光催化剂的XRD分析28-29
        3.3.3 温度对Ni_3(PO_4)_2·8H_2O晶体结构与形貌的影响29
        3.3.4 不同温度下制备的Ni_3(PO_4)2?8H_2O样品的吸附-脱附曲线29-31
        3.3.5 光催化剂的光吸收特性31
        3.3.6 光催化活性31-32
    3.4 不同pH下Ni_3(PO_4)_2·8H_2O的制备及光催化性能评价32-35
        3.4.1 样品制备步骤32
        3.4.2 光催化剂的XRD分析32-33
        3.4.3 光催化剂的微观形貌33
        3.4.4 光催化剂的光吸收特性33-34
        3.4.5 光催化活性34-35
    3.5 表征35-37
        3.5.1 能谱35
        3.5.2 热重35-36
        3.5.3 傅里叶变换红外光谱(FT-IR)36-37
    3.6 光催化机理37-38
    3.7 结论38-39
第四章 Cu_2(OH)PO_4的制备表征及其光催化性能的研究39-52
    4.1 引言39-40
    4.2 不同反应摩尔比Cu_2(OH)PO_4的制备及光催化性能评价40-43
        4.2.1 样品制备步骤40
        4.2.2 光催化剂的XRD分析40
        4.2.3 光催化剂的微观形貌40-41
        4.2.4 光催化剂的光吸收特性41
        4.2.5 光催化活性41-43
    4.3 不同pH下Cu_2(OH)PO_4的制备及光催化性能评价43-46
        4.3.1 样品制备步骤43
        4.3.2 光催化剂的XRD分析43-44
        4.3.3 光催化剂的微观形貌44
        4.3.4 光催化剂的光吸收特性44-45
        4.3.5 光催化活性45-46
    4.4 不同反应温度Cu_2(OH)PO_4的制备及光催化性能评价46-48
        4.4.1 样品制备步骤46
        4.4.2 光催化剂的XRD分析46
        4.4.3 光催化剂的微观形貌46-47
        4.4.4 光催化剂的光吸收特性47-48
        4.4.5 光催化活性48
    4.5 表征48-51
        4.5.1 能谱49
        4.5.2 傅里叶变换红外光谱(FT-IR)49-50
        4.5.3 光催化机理50-51
    4.6 本章小结51-52
第五章 复合光催化剂Cu_2(OH)PO_4/Ni_3(PO_4)_2·8H_2O的制备表征及光催化性能研究52-61
    5.1 引言52-53
    5.2 不同Cu_2(OH)PO_4掺入量下产物的合成53
    5.3 结果与讨论53-60
        5.3.1 光催化剂的XRD分析53-54
        5.3.2 光催化剂的微观形貌54-56
        5.3.3 光催化剂的光吸收特性56
        5.3.4 Cu_2(OH)PO_4/Ni_3(PO_4)2?8H_2O的光催化活性56-58
        5.3.5 光催化机理58-60
    5.4 本章小结60-61
总结61-62
参考文献62-72
发表文章目录72-75
致谢75-76
        下载全文需50


本文地址:

上一篇:葡萄糖苷基Gemini表面活性剂的合成与性能研究
下一篇:1-nC18烯基润滑油基础油的合成

分享到: 分享磷酸镍和羟基磷酸铜光催化剂的制备及其光催化性能的研究到腾讯微博           收藏
评论排行
公告 
相关硕士文献推荐